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Approximate relations are obtained in the form of inequalities allowing determination of the conditions 
for which the application of a one-dimensional flow model using the Reynolds analogy is not physically 
valid. 

Methods of calculation based on the use of a one-dimensional model and Reynolds analogy are widely employed 
in engineering practice [1, 2, 3]. It is well known that the Reynolds analogy is applicable only with a number of l imit  
conditions. 

A study is made below of the limits of physical validity of methods based on a one-dimensional model and the 
Reynolds analogy, in the case of variable wall temperature in the flow direction. 

All other conditions ensuring Reynolds analogy are assumed to be satisfied. 

Let us examine a steady gas flow in a circular cylindrical tube of diameter D, at a section where the flow is fully 
developed thermally and hydrodynamically. 

We shall take as reference velocity, temperature, pressure and density, respectively, the limiting velocity and 
stagnation'temperature, and the pressure and density at the center of the channel entrance; and for the viscosity and 
eddy viscosity - the vi~osity/11 on the axis in the entrance determined for the corresponding stagnation temperature. 
We shall designate by Re the Reynolds number based on viscosity /~l, tube radius 13/2, and the limiting velocity at  the 
channel entrance. 

We shall base the longitudinal coordinate x on D~e/2, while the tube radius D/2 will serve as reference scale for 
the transverse coordinate y. All the values below are dimensionless. The axis Ox coincides with one of the tube genera- 
tors and is directed downstream, and the axis Oy is directed into the tube. The wall temperature is considered to be con- 
stant around the tube perimeter and is a given function of x only, i . e . ,  the symmetrical  problem is considered. The gas 
velocity is subsonic, and the pressure is assumed to be independent of  the transverse coordinate. 

In the one-dimensional treatment [1, 2, 3] the problem reduces to integration of  the set of  equations 

du k - - 1  dp 
O q- - -  - -  q- ~0 = 0, (1) 

dx 2k dx 

O d O/dx = qo/cp, (2) 
p = O(O --u~)/u,  

where 

x 0 = Re Ou U4. (3) 

The resistance coefficient g is assumed to be a given function of Re and the temperature factor 00/0 , while q0 
is connected with r0 by Reynolds analogy qo/Cp ----- (0 o - -  O)'ro/u. 

In order to determine the limits of applicability of this method, we shall examine the relation on the tube axis [4] 

Pth 

01 - -  ll  I 

dtt I k - -  1 dp q_ f % __-- 0, (4) 

dx + T dx 

d01 _ F qo (5)  
dx cp 

Here, from their physical meaning, the coefficients f and F -> 0. 

We shall introduce the velocity profile coefficient w = u/u I and assume, as in [1, 2], that it varies only slightly 
along the flow. 

This may be demonstrated on the basis of the following argument. 
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where 

We approximate the velocity profile by the power law u v = t t j t j  n ,  

1 

1 ~ 9 u~,( 1 y ) d y  
G v 

0 

Because of Reynolds 'analogy 

where n is a function of Re: 

I2 

I1 

1 1 
2 

= x d g ,  11  = 

0 v - -  u-v 
0 0 

uv(1 - - g )  dtJ. 
0 v - -  u~ 

(0 v __ 00)/(01 _ %) __ gn, 

and the integrals 11 and 12 may be put in the form of the convergent series 

where when 0 < 01/00 /--~ 2 

when 01/00 > 1 

while 

1 I1 l <~' -~) 
2 

, I<3, -2)  + 1<5, - 3 ) + . . .  

- -  lo_ =: 1(2, -1 )  @ 1<4, -2 )  @ i(6, _ 3 ) @ . .  ", 

/+,=.', 2 
J ) (01/00 - -  1)~ 

In (i + k) + 11 [n (i + k) + 2 ]  ' 

X I (i' i) : u~ k 

k=O 

and 

,)= (J)='  (k o 
j ( j - -  1)(j--  2 ) . . . ( ] - - k  + 1) 

k~ 
(k > 0)' 

P,k = E { ( - -  1) 1 [ n ( i + l ) + l l [ n ( i + l ) + 2 ]  . 
/=0 [ 

Results of calculations of w, based on the relation following from similarity of the profiles 

(0 - -  0o)/(01 - -  %) = +, (6) 

are given in Fig. 1. for n = 0.10 and n = 0.15 (which correspond to Re numbers of the order of 4x10 6 and 4xl0a).  

The variation of w at constant n is negligibly Small. Since n depends weakly on Re, we may make the approxi- 
mation that the value of w remains constant in each case examined, and i tsvalue may be determined for some mean n. 

Introducing to = u/u  i into (4) and using (3) and (1), we easily obtain 

From (1) and (3), taking into account 

f 1 G X (  O - u 2 =  - -  1) du 
x o 01oJ 2 - -  u 2 d x  

(6), we get 

(7) 

du % X %I0 - -  1 + 2k :~/(k + 1) 
d x  G 1 ~ "l, 2 

(8) 

Substituting (8) into (7) and making a simple transformation, we have 

f = l  2k ),2/(k ~ 1 ) + 0o/0 - -  I (p 
I ~ 3, 2 1 - -  ~ - -  (k - -  1)>2/(k + 1) 

(9) 

where 

+ = (1 - ~ )  ( I + + %/0). ( lo) 
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Since f ~ 0, the solution of the problem in the formulation given at the beginning of this paper loses its physical 
meaning* whenever we have the inequality 

rp k + l  0 . k + l  

(11) 
It follows from (10) that r > O. It is therefore immediately clear from (11) that the formulation of the problem is in- 
correct for any 0o[0 when the k are sufficiently close to 1. Since tile left side of (11) increases and the right side de-  

{a.) 

O, OO 

0,85 

0,84 

ae2! 
0.4 0,s a8 2 ~ 0/00 

Fig. I. Dependence of velocity profile coefficient 
co on the temperature factor O/O0 and Re; 1) Re = 
=4 x 104; 2) 4 x106 . 

decreases, as X increases, the formulation of the problem is 
incorrect for all X < 1, ifrp ( 0 o / 0 -  I) > 1 - -  rp, orqOgo/0 > 1, 

Hence, taking (10) into account, we obtain 

o r  

(00o) 0o (1 2 +  --o (1 - o , ) -  1 > 0 

~ o 

--6 - >  + 

Thus, for example, when oJ = 0.85, we must have 

Ode < 2.27 for the formulation of the problem to be phy-  
sically valid. It is clear that when the gas is heated, even 
comparatively small temperature factors lead to an in- 
correct formulation. 

Let us now look at the conditions following from the 
behavior of coefficient F. From (2) and (6), taking into account that f >- O, we obtain 

F = 1 - -  Gc----P(1 ~ o~) dO~ 
qo dx 

whence the condition for incorrectness (F < O) will be 

GCv( l__ to)  dO o 
qo- > t. (12) 

If the signs of q0 and 00/dx are different, inequality (12) does not hold. Let d00/dx and q0 have the same sign. To 
obtain easily understandable results we transform (12), using the formulas for r 0 and q0/cp, and obtain 

4 ( 1 - - ~ , )  dO~ > 1. (13) 
R ~  (% L_ O) dx 

Putting X = __1 ~-~ x, where X is the tube length coordinate referred to its diameter, we have 
2 

2 1 - -o~  d0~ > 1. 

(0 o - -  O) d X  

For heating, when O < 0o, we must have 

1 dO o > ~ 1 - -  0/0 0 

0 o d X  2 1 - -  o~ 
(14) 

*Henceforth we shall refer to this, for brevity, as the incorrect formulation of the problem. 
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For cooling 

1 d 0 o ~ 1 - -  0/0 o 
< 

0 o d X  2 1 - -  

The inequali t ies  (14) and (15) mean that,  for a given value of the temperature  factor 0/0 o , the problem will  be in -  
correct ly formulated if  the wall tempera ture  increases during heat ing of the gas and decreases during cooling,  faster 
than the function 

B ( X ) = e x p (  ['2 1--0/0~ X ) .  

For example ,  when w = 0.85-and ~ = 0. 012, we have: B = exp (0.02 X) when 0/00 = 0 .5  and B = exp ( - 0 . 0 4 X )  when 

0/00 = 2. In the first case the problem will  be incorrect ly formulated i f  the wal l  temperature  increases by more than 
exp (0.02) in a length equal to one diameter ,  i . e . ,  by 1.02~ In the second case, the formulation wil l  be incorrect when 
the wall  temperature  decreases in a length of one diameter  by more than exp (0.04), i . e . ,  by 1.04. Note that for t em-  
perature factors close to l ,  the wall  temperature  gradients are small  enough for incorrectness to occur. The more the 
temperature  factor deviates from 1, the less sensitive is the effect of  the nonisothermici ty of the wall .  

To sum up, it may  be concluded that the effect of the temperature  factor is most appreciable  in heating.  Note that 
analysis of (12) leads to the same results. 

When the gas is cooled, the correct formulation of the problem breaks down for values of X = k K fairly close to 1. 

As the temperature  factor approaches l ,  the value of k K decreases and continues to decrease with further increase of the 
temperature  factor. Finally,  at certain values of the temperature factor, as discussed above, the correctness breaksdown 
for any k K in the interval  [0, 1]. 

These conclusions are qual i ta t ive ly  quite understandable: it is known that the supply of heat  to a gas accelerates  
subsonic flow and causes an increase (in the absolute value) of the pressure gradient.  Conversely, removal  of heat  has 

the opposite effect.  Therefore, when heat  is supplied, the correct-  
f --.. ness breaks' down earlier,  and when heat  is removed,  la ter  than in 

the adiabat ic  case. . - - - . - - - - ~ _ . . ~  

\ \ 
O.2 0, ~ 0,6 Q,8 " 

(o 

o,8 

o,6 

oA 

O'2 

0 

Fig. 2. Dependence of coeff ic ient  f on ve-  

loci ty  coeff ic ient  k when w = 0.85: 1) 00/0 = 
= 0; 2) 1; 3) 1.5; 4) 2. 

This fact is well  i l lustrated in Fig. 2. Incorrect formulation of 
the problem corresponds to the region ] < 0. The curve 00/8 = 0 is 

the lower boundary of the gas cooling regimes. When 00/e = 0, the 

region of k for which at < 0 is limited to a small section near k = 1. 

This region rapidly grows with increase of O0/e, spanning the whole 

interval  [0, 1] when a d o  > 2.27. 

NOTATION 

G - mass flow rate of gas; p - pressure; r -- shear stress; 0 - 
stagnation temperature;  q - specif ic  heat  flux; u - mean  mass ve lo-  
city; o0 = u/u1 - veloci ty  profile coefficient;  k = u / a .  - veloci ty  
coefficient;  a t and F - coefficients proportional,  respect ively,  to cur- 
vature of veloci ty  profiles and profile of stagnation temperatures on 

the axis. Subscripts: 0 - wall,  1 - axis of the tube. 
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